

DPP No. 18

Total Marks : 34

Max. Time : 36 min.

Topics	s: Fundamental	of Mathematics, Fu	nction, Limits			
Type of Questions						, Min.
Single choice Objective (no negative marking) Q.1,2,3(3 marks, 3 min.)Multiple choice objective (no negative marking) Q.4(5 marks, 4 min.)Subjective Questions (no negative marking) Q.5,6,7(4 marks, 5 min.)Match the Following (no negative marking) Q.8(8 marks, 8 min.)					[9, [5, [12, [8,	9] 4] 15] 8]
1.	Total number of po (A) 1	sitive integers x for w (B) 2	/hich f(x) = x ³ – 8x ² + (C) 3	20x – 13 is a prime number (D) 4	, is	
2.	Let f be a real valued function such that for any real x f(15 + x) = f(15 - x) and $f(30 + x) = -f(30 - x)Then which of the following statements is true ?(A) f is odd and periodic (B) f is odd but not periodic(C) f is even and periodic (D) f is even but not periodic$					
3.	Which of the follow (A) $f(x) = 1^{[x]} + (-1)$ (C) $h(x) = 2^{[x]} - (-2)$	ing functions is not ⊧ ⊠) [⊠]	periodic, where [.] c (B) g(x) = (D) φ(x) =	ic, where [.] denotes greatest integer function (B) $g(x) = 1^{[5x]} + (-1)^{[5x]}$ (D) $\phi(x) = 1^{[x]} - (-1)^{[x]}$		

4. Which of the following statements are true for the function f defined for $-1 \le x \le 3$ in the figure shown.

- (A) $\underset{x \to -1^+}{\text{Limit}} f(x) = 1$
- (B) $\underset{X \to 2}{\text{Limit}} f(x)$ does not exist
- (C) $\underset{X \to 1^{-}}{\text{Limit}} f(x) = 1$
- (D) $\underset{x \to 0^+}{\text{Limit}} f(x) = \underset{x \to 0^-}{\text{Limit}} f(x)$
- (E) Limit $_{X \to C}^{Limit}$ f(x) exists at every c between -1 & 1
- (F) $\underset{X\to C}{\text{Limit}} f(x)$ exists at every c between -1 & 0.

Get More Learning Materials Here : 📕

5. Find the fundamental period of the functions

(i)
$$f(x) = \sin\left(2\pi x + \frac{\pi}{3}\right) + 2\sin\left(3\pi x + \frac{\pi}{4}\right) + 3\sin 5\pi x$$

(ii) $f(x) = \sin\left(\frac{\pi}{3}x\right) + \cos\left(\frac{\pi}{4}x\right)$

6. If
$$f(x) = 4x^3 - x^2 - 2x + 1$$
 and $g(x) = \begin{cases} Min \{f(t) : 0 \le t \le x\} \\ 3 - x \end{cases}$; $0 \le x \le 1$
 $(1 < x \le 2)$ then find the value of $g\left(\frac{1}{4}\right) + g\left(\frac{3}{4}\right) + g\left(\frac{5}{4}\right)$.

7. Identify the indeterminate forms (if any) in the following limits :

(i)
$$\lim_{x \to 0} \frac{\sin x^3}{x^2}$$

- (ii) $\lim_{x\to 0} \frac{\sin[x^2]}{[x^2]}$; [.] represents the greatest integer function
- (iii) $\lim_{x\to 0} |x|^{[\sin^2 x]}$; [.] represents the greatest integer function

(iv)
$$\lim_{x \to 0^+} \frac{\csc e^{-1} x}{\cot^{-1} x}$$

(v)
$$\lim_{x \to 0^-} \frac{\csc e^{-1} x}{\cot^{-1} x}$$

8. Let
$$f(x) = x + \frac{1}{x}$$
 and $g(x) = \frac{x+1}{x+2}$.

Match the composite function given in Column–I with respective domains given in Column–II.
Column I
Column II
Column II

(A)	fog(x)	(p)	R – {–2, –5/3}
(B)	gof(x)	(q)	R – {–1,0}
(C)	fof(x)	(r)	R – {0}
(D)	gog(x)	(s)	R - {-2, -1}
		(t)	R – {– 1}

Answers Key

- **1.** (C) **2.** (A) **3.** (C) **4.** (A B D)
- **5.** (i) 2 (ii) 24 **6.** 5/2
- 7. (i) $\frac{0}{0}$ (ii) not defined (iii) non indeterminate (iv) not defined (v) not defined
- 8. $(A) \rightarrow (s)$; $(B) \rightarrow (q)$; $(C) \rightarrow (r)$; $(D) \rightarrow (p)$

Get More Learning Materials Here : 📕

